510 research outputs found

    BCS pairing in a trapped dipolar Fermi gas

    Get PDF
    We present a detailed study of the BCS pairing transition in a trapped polarized dipolar Fermi gas. In the case of a shallow nearly spherical trap, we find a decrease in the transition temperature as a function of the trap aspect ratio and predict the existence of the optimal trap geometry. The latter corresponds to the highest critical temperature of the BCS transition for a given number of particles. We also derive the phase diagram for an ultracold trapped dipolar Fermi gas in the situation where the trap frequencies can be of the order of the critical temperature of the BCS transition in the homogeneous case, and determine the critical value of the dipole - dipole interaction energy below which the BCS transition ceases to exist. The critical dipole strength is obtained as a function of the trap aspect ratio. Alternatively, for a given dipole strength, there is a critical value of the trap anisotropy for the BCS state to appear. The order parameter calculated at criticality exhibits novel non-monotonic behaviour resulting from the combined effect of the confining potential and the anisotropic character of the interparticle dipole - dipole interaction.DFGRTN Cold Quantum GasesESF PESC BEC2000+Russian Foundation for Basic ResearchQUDEDISINTASAlexander von Humboldt Foundatio

    Low energy collective excitations in a superfluid trapped Fermi gas

    Full text link
    We study low energy collective excitations in a trapped superfluid Fermi gas, that describe slow variations of the phase of the superfluid order parameter. Well below the critical temperature the corresponding eigenfrequencies turn out to be of the order of the trap frequency, and these modes manifest themselves as the eigenmodes of the density fluctuations of the gas sample. The latter could provide an experimental evidence of the presence of the superfluid phase.Comment: 5 pages, REVTeX, referencies correcte

    Collective excitations in a fermion-fermion mixture with different Fermi surfaces

    Full text link
    In this paper, collective excitations in a homogeneous fermion-fermion mixture with different Fermi surfaces are studied. In the Fermi liquid phase, the zero-sound velocity is found to be larger than the largest Fermi velocity. With attractive interactions, the superfluid phase appears below a critical temperature, and the phase mode is the low-energy collective excitation. The velocity of the phase mode is proportional to the geometric mean of the two Fermi velocities. The difference between the two velocities may serve as a tool to detect the superfluid phase.Comment: 4 pages. To be published in Phys. Rev.

    Laser cooling of a trapped two-component Fermi gas

    Full text link
    The collective Raman cooling of a trapped two-component Fermi gas is analyzed. We develop the quantum master equation that describes the collisions and the laser cooling, in the festina lente regime, where the heating due to photon reabsorption can be neglected. The numerical results based on Monte Carlo simulations show, that three-dimensional temperatures of the order of 0.008 T_F can be achieved. We analyze the heating related to the background losses, and conclude that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses. Finally we derive an analytic expression for the temperature of a trapped Fermi gas heated by background collisions, that agrees very well with the data obtained from the numerical simulation.Comment: 5 pages, 3 figure

    The CCFM Monte Carlo generator CASCADE 2.2.0

    Get PDF
    CASCADE is a full hadron level Monte Carlo event generator for ep, \gamma p and p\bar{p} and pp processes, which uses the CCFM evolution equation for the initial state cascade in a backward evolution approach supplemented with off - shell matrix elements for the hard scattering. A detailed program description is given, with emphasis on parameters the user wants to change and variables which completely specify the generated events

    J/psi Production at the LHC

    Full text link
    We firstly examine hadroproduction of prompt J/psi's at the Fermilab Tevatron in a Monte Carlo Framework by means of the event generator PYTHIA 5.7 in which those colour-octet matrix elements processes relevant for charmonium production have been implemented accordingly. We find that colour-octet matrix elements presented in literature from p-pbar collider data are systematically overestimated due to overlooking of the effective primordial transverse momentum of partons (i.e. including higher-order QCD effects). We estimate the size of these effects using different parton distribution functions. Finally, after normalization to Tevatron data, we extrapolate up to LHC energies making a prediction on the expected pt differential cross-section for charmonium.Comment: 4 pages, LaTex, 3 Figures included in the text, Contribution to the 2nd Int. Conference on Hyperons, charm and beauty hadrons (Montreal, Aug 27-30, 1996

    Cooper pairing and single particle properties of trapped Fermi gases

    Full text link
    We calculate the elementary excitations and pairing of a trapped atomic Fermi gas in the superfluid phase. The level spectra and pairing gaps undergo several transitions as the strength of the interactions between and the number of atoms are varied. For weak interactions, the Cooper pairs are formed between particles residing in the same harmonic oscillator shell. In this regime, the nature of the paired state is shown to depend critically on the position of the chemical potential relative to the harmonic oscillator shells and on the size of the mean field. For stronger interactions, we find a region where pairing occur between time-reversed harmonic oscillator states in different shells also.Comment: Slightly revised version: Mistakes in equation references in figures corrected. Accepted for Phys. Rev.

    Superfluid pairing in a polarized dipolar Fermi gas

    Full text link
    We calculate the critical temperature of a superfluid phase transition in a polarized Fermi gas of dipolar particles. In this case the order parameter is anisotropic and has a nontrivial energy dependence. Cooper pairs do not have a definite value of the angular momentum and are coherent superpositions of all odd angular momenta. Our results describe prospects for achieving the superfluid transition in single-component gases of fermionic polar molecules.Comment: 12 pages, 2 figure
    • …
    corecore